当前位置:首页 > 教学资料 > 教学反思

《函数》教学反思

时间:2024-10-08 16:30:17
《函数》教学反思

《函数》教学反思

身为一位到岗不久的教师,我们要有一流的课堂教学能力,通过教学反思可以很好地改正讲课缺点,教学反思应该怎么写才好呢?以下是小编为大家整理的《函数》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《函数》教学反思1

师:请谈谈你的收获与体会。

生1:通过这节课的学习,我学会了用反比例函数去解决一些实际问题。

生2:我还了解了有关杠杆定律的一些知识,为以后学习物理奠定了基础。

生3:各个问题的形式虽然不一样,我们可以归于函数模型解决,今天就是利用反比例函数模型解题的。

师:学习了本节的内容,这位同学有一种建立数学模型解题的意识。

生4:用数学知识还可以解决一些物理问题。

生5:数学来源于生活,生活中处处有数学,运用数学可以解决很多问题,这更坚定了我学好数学的信心。

教师归纳:1.解决有关反比例函数实际问题的流程如下:

2.利用反比例函数解决实际问题时,既要关注函数本身,又要考虑变量的实际意义。

反思:教师引导,学生争先恐后谈收获,特别强调了建立函数模型解决实际问题的思考方法。然后教师归纳出解决实际问题的流程图,以及所要引起注意的问题,起到了画龙点睛的.教学效果。这样的课堂小结能放能收,还能上升到数学思想方法的高度进行思考,无疑是成功的。

《函数》教学反思2

这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版A版数学必修一的内容。

通过这节课的教学,我主要有以下三点收获:

授课的致用性:

大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的欣赏。

碳14的对数公式

则是今天导课的重要兴趣吸引点。

信息技术的应用

多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。

作业布置的探索性尝试

(1)上百度,知乎查阅考古年代的推断方法及碳14的相关应用.

(2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。

当然,本节课还是有很多没有想到。也有三点。

1、内容的繁多性

总是认为本节课内容简单,要多讲一点,把可能的'题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。

2、师生互动的简单重复

发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。

3、授课中的德育环节

其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。

《函数》教学反思3

任意角的三角函数是三角函数这一章里最重要的一节课,是本章的基础。因此本节课的重点放在了任意角的三角函数的理解上。在本节课的开头以学生所熟悉的直角三角形的锐角入手,引导学生尝试探究,逐步深入,引出任意三角函数的定义,以问题的形式巩固深化任意角三角函数值的计算。引导学生自主探究任意角的三角函数的生成过程,让学生在活动中体验数学与社会的联系,新旧知识的内在联系。

通过任意角三角函数的定义,启发学生找到各个三角函数在每个象限的符号以及在坐标轴上的值。并用“一全正,二正弦,三余弦,四正切”这一句话来概括了各个象限的符号。

在例题的设置上,例1是已知一个角终边上一点的坐标,求这个角的三个三角函数值。通过这个例题的练习,让学生更好地巩固了任意三角函数的定义,会求任意一个角的三角函数。例2和例3的设置是让学生进一步熟记各个三角函数在每个象限的范围以及坐标轴上的值。例4是把几个三角函数组合在一起,形成一个新的函数,结合函数的表达形式求定义域,能够让学生反过来已知三角函数值的符号去判断角的大小。四个立体的设置让学生更好地掌握任意角的三角函数,为以后的学习打下基础。

《对数函数的图象和性质》这节课再次利用学习指数函数时的细胞分裂例子,从研究指数函数的反面入手,已知了分裂后的个数求分裂的.次数,由此引出了对数函数的概念。把对数函数和指数函数相对比能够发现它们的定义域和值域相互交换,它们互为反函数。用描点法画出对数函数的图象,再仿照研究指数函数的方法让学生自主地去探究对数函数的定义域,值域,定点,单调性,函数值的分布等各个性质。教给学生方法比教给学生知识更重要。通过类比,以旧引新,自然过渡到本节的学习,用研究指数函数的图象与性质的方法来研究对数函数的图象与性质。在教学过程中,引导学生确定探究问题、探究方向和探究步骤,确保了探究的有效性;让学生动手画图、观察图象,启发学生思考、实验、分析、归纳,注重探究的过程与方法。让学生成为学习的主人,学会学习,学到“对比联系”、“数形结合”及“分类讨论”的思想方法。

例题的设置主要就是围绕对数函数的性质。总最基本的定义域和值域开始。再用对数函数的单调性去比较两个对数的大小以及解对数形式的不等式。对数函数是函数中的一种,因此,例5后的练习把对数函数和二次函数结合在了一起,并且加上了一个参数,根据对数函数和二次函数的性质去讨论参数的取值范围。通过这些例题的练习使学生加深了对对数函数的理解。

《函数》教学反思4

这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。

整个教学过程主要分为三部分:

第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让学生复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。

第二部分是学习探究,探求活动前先让一名学生读了学习目标,让大家带着目标去探究。探究活动一是让学 ……此处隐藏5536个字……解决问题的能力及应用意识的培养,为后继学习打下基础。

探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛。教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法。教学中还注意到尊重学生的个体差异,使每个学生都学有所获。 根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。()探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

《函数》教学反思12

我在反比例函数的意义的教学中做了一些尝试。由于学生有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中利用类比、归纳的数学思想方法开展数学建模活动。

一、创设情景,引入新课。

我选择了课本上的探究素材,让学生从生活实际中发现数学问题,从而引入学习内容。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的意义,构建反比例的数学模型就显得水到渠成了。

二、深入探究,理解涵义

为了使学生进一步弄清反比例函数中两种量之间的数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了例题1使学生对反比例的一般型的变式有所认识,设计例题2使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的思路进行,达到了预计的效果。此环节暴露的`问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。

三、应用拓展:

设置例题3的目的是让学生得到求反比例函数解析式的方法:待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。设置两个练习,让学生充分理解并掌握反比例函数的应用。

另外课堂中指教者的示范作用体现的不是很好,板书不够端正,肢体语言的多余动作,需要在今后的教学过程中严格要求自己,方方面面进行改善!本次公开课得到备课组长刘燕老师的认真指导。

《函数》教学反思13

今天上午,我上了一节课多媒体公开课《函数的综合》,现反思如下:

本节课是人教A版高中数学第一轮文科复习章末复习课的内容,是学生学过函数的概念、性质、以及基本初等函数的图象和性质等基础之上,进行一次综合性较高的复习课。

本节课贯穿着以三个方面综合(即与数列、不等式的综合,以及函数中创新题)为主线,以函数与方程的思想、数形结合思想等数学思想为指导,提升学生对知识的综合应用能力,提高学生理性思维。

授课完后,本人作以下几点反思:

(1)本节课授课对象是文科实验班的学生,他们对知识、方法理解能力会较好些,适合讲解有一定综合性和难度大的题目,适当拔高既有利于让他们对解决问题方面一些挑战性,又可让他们增强对知识理解的深刻性;

(2)课堂容量增大,减少了师生间的互动,可能需要考虑增加学生思考时间,在这方面有所欠缺;

(3)加强对学生解题切入点的`指导,要告诉学生这样解题为什么,而用另外一个思路解题时有什么不好等?

(4)可以考虑增加作解题过程的思维导图,更清晰展示解题过程有要点和关键点。

心理学家布鲁纳指出:“教学过程是一种提出问题和解决问题的持续不断的活动.”思维永远是从问题开始的,函数的综合是对函数章节知识应用的一个提升,逐步设疑、诱导、解疑,指导学生去发现和解题,使学生始终处于兴奋的状态之中。引导学生从数学思想方法角度去问题,促进学生主动学习,勇于探究,使课堂教学的内涵更加丰富。

《函数》教学反思14

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的'矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。

《函数》教学反思15

函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体的实例,体会数集之间的一种特殊的对应关系,即函数。为了充分运用学生已有的认知基础,为了给抽象概念以足够的实例背景,以有助于学生理解函数概念的本质,我采用后一种方式,即从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念。继而,通过例题,思考、探究、练习中的问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义进行对比。

在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点P,测出点P的.坐标,观察点P 的坐标横坐标与纵坐标的变化规律。使学生看到函数描述了变量之间的依赖关系,即无论点P在哪个位置,点P的横坐标总对应唯一的纵坐标。由此,使学生体会到,函数中的函数值的变化总是依赖于自变量的变化,而且由自变量唯一确定。

《《函数》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式